Logic-Encrypted Synthesis for Energy-Harvesting-Powered Spintronic-Embedded Datapath Design
نویسندگان
چکیده
The objectives of advancing secure, intermittency-tolerant, and energy-aware logic datapaths are addressed herein by developing a spin-based design methodology and its corresponding synthesis steps. The approach selectively-inserts Non-Volatile (NV) Polymorphic Gates (PGs) to realize datapaths which are suitable for intrinsic operation in Energy-Harvesting-Powered (EHP) devices. Spin Hall Effect (SHE)-based Magnetic Tunnel (MTJs) are utilized to design NV-PGs, which are combined within a Flip-Flop (FF) circuit to develop a PG-FF realizing Boolean logic functions with inherent state-holding capability. The reconfigurability of PGs is leveraged for logic-encryption to enhance the security of the developed intermittency-resilient circuits, which are applied to ISCAS-89, MCNS, and ITC-99 benchmarks. The results obtained indicate that the PG-FF based design can achieve up to 7.1% and 13.6% improvements in terms of area and Power Delay Product (PDP), respectively, compared to NV-FF based methodologies that replace the CMOS-based FFs with NV-FFs. Further PDP improvements are achieved by using low-energy barrier SHE-MTJ devices within the PG-FF circuit. SHE-MTJs with 30kT energy exhibit 40.5% reduction in PDP at the cost of lower retention times in the range of minutes, which is still sufficient to achieve forward progress in EHP devices having more than hundreds of power-on and power-off cycles per minute. Arman Roohi, Ramtin Zand, and Ronald F. DeMara
منابع مشابه
Non-Volatile Logic-In-Memory Computation using Spin-Hall-Effect-Based Datapaths
Energy-harvesting-powered computing offers intriguing and vast opportunities to dramatically transform the landscape of Internet of Things (IoT) devices and wireless sensor networks by utilizing ambient sources of light, thermal, kinetic, and electromagnetic energy to achieve battery-free computing. In order to operate within the restricted energy capacity and intermittency profile of battery-f...
متن کاملFaculty of Electrical Engineering University of Banja Luka
This paper evaluates the present state of the art of energy-efficient embedded processor design techniques and demonstrates, how small, variable-architecture embedded processors may exploit a run-time minimal architectural synthesis technique to achieve greater energy and area efficiency whilst maintaining performance. The picoMIPS architecture is presented, inspired by the MIPS, as an example ...
متن کاملEnergy Efficient Multi-Core Processing
This paper evaluates the present state of the art of energy-efficient embedded processor design techniques and demonstrates, how small, variable-architecture embedded processors may exploit a run-time minimal architectural synthesis technique to achieve greater energy and area efficiency whilst maintaining performance. The picoMIPS architecture is presented, inspired by the MIPS, as an example ...
متن کاملAutomated Generation of Processor Architectures in Embedded Systems Design
Automated design of processor architectures has traditionally been focused on the clocked pipeline organisation consisting of a fairly standard datapath and control logic. Control logic has been normally generated from the architectural description of a processor using the conventional techniques based on Finite State Machines (FSMs). As the area of processor design automation is becoming incre...
متن کاملResonant frequency of bimorph triangular V-shaped piezoelectric cantilever energy harvester
The concept of “energy harvesting” is to design smart systems to capture the ambient energy and to convert it to usable electrical power for supplying small electronics devices and sensors. The goal is to develop autonomous and self-powered devices that do not need any replacement of traditional electrochemical batteries. Now piezoelectric cantilever structures are being used to harvest vibrati...
متن کامل